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We argue that the complex numbers are an irreducible object of quantum probability: this
can be seen in the measurements of geometric phases that have no classical probabilistic
analogue. Having the complex phases as primitive ingredient implies that we need
to accept nonadditive probabilities. This has the desirable consequence of removing
constraints of standard theorems about the possibility of describing quantum theory with
commutative variables. Motivated by the formalism of consistent histories and keeping
an analogy with the theory of stochastic processes, we develop a (statistical) theory of
quantum processes: they are characterized by the introduction of a “density matrix” on
phase space paths (it thus includes phase information) and fully reproduces quantum
mechanical predictions. We can write quantum differential equations (in analogy to
Langevin equation) that could be interpreted as referring to individual quantum systems.
We describe the reconstruction theorem by which a quantum process can yield the
standard Hilbert space structure if the Markov property is imposed. We discuss the
relevance of our results for the interpretation of quantum theory (a sample space is
possible if probabilities are nonadditive) and quantum gravity (the Hilbert space arises
here after the consideration of a background causal structure).

KEY WORDS: quantum probability; geometric phases; consistent histories; quantum
processes.

1. INTRODUCTION

. . . Is what the matrix-physicists and q-number-physicists say
true—that the wave equation describes only the behavior of a statistical
ensemble, just like the so-called Fokker differential equation?. . .

Schrödinger to Planck, 1927

This quotation is from a letter Schr¨odinger sent to Planck (Przibram, 1967)
after the fifth Solvay Congress in 1926. In this congress the matrix mechanics of
Heisenberg and the wave mechanics of Schr¨odinger had faced each other and were

1 This paper is an invited contribution to the Peyresq VII conference.
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1229

0020-7748/03/0600-1229/0C© 2003 Plenum Publishing Corporation



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469729 September 26, 2003 15:36 Style file version May 30th, 2002

1230 Anastopoulos

reconciled by the brilliant idea of Born to interpret Schr¨odinger’s wave function
as corresponding to probability.

This proved to be one of the last pieces in the puzzle towards the develop-
ment of a full-fledged quantum theory. But Schr¨odinger was not satisfied with
this interpretation; he distrusted the philosophy underlying the physical ideas of
Heisenberg, Born, and Bohr (“the matrix-physicists and q-number-physicists” in
the quotation). In fact, he wanted to interpret the wave function as a physical wave,
but he could not: the wave function was defined on the configuration space and
not on the physical space, as any physical wave ought to.

Fokker’s equation, to which Schr¨odinger refers is known today as the Fokker–
Plack equation. It is the equation that describes the time evolution of the probability
density in Brownian motion. For Schr¨odinger it was natural to consider that a
probabilistic interpretation of the wave function would amount to its having a
physical function analogou’s to that of a classical probability distribution. In such
a case one could say that the wave function provides the description of a statistical
ensemble rather than an individual quantum system.

But the interpretation of Schr¨odinger’s equation as a Fokker–Planck type of
equation did not gain ground and for good reason. The structure of these equations
are very distinct. The Fokker–Planck equation reads

∂

∂t
ρ = Lρ , (1.1)

whereρ is a probability distribution andL a linear operator in the space, where
theρ live. Schrödinger’s equation is of course

i
∂

∂t
ψ = Hψ (1.2)

H is the Hamiltonian, a self-adjoint operator on the Hilbert space, where theψ

live. The difference between these two equations and what distinguishes between
classical and quantum probability is the presence of the complex uniti . Well,
you might argue that complex numbers are not really measurable quantities, just
a convenient device to simplify the writing of equations; indeed, Schr¨odinger’s
equation can be written without the use ofi by splitting it into two equations, one
for the real and one for the imaginary part ofψ . However, physical observables
arise out of the probability distributionp = |ψ |2, so even if we forego the use
of complex numbers they will reappear in the form of theU (1) invariance of the
probabilities.

In effect, what distinguishes quantum from classical probability is the pres-
ence of the complex numbers, not so much in the dynamics, but as theU (1)
symmetry of the probability assignment.

Coming back to the Fokker–Planck equation, we note that it is a part of the
more general theory of stochastic processes. The stochastic processes can describe
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the dynamics in two ways: either through the Fokker–Planck equation by writing
a deterministic equation for the probability density that refers to an ensemble of
physical systems, or through stochastic differential equations (like the Langevin
equation) that can be interpreted as referring to the behavior of anindividual
system evolving under some random forces. In classical probability, we then have
the following diagram

Fokker–Planck equation← stochastic processes→ Langevin equation

If we try to interpret Schr¨odinger’s equation as analogous to the Fokker–Planck
equation, we immediately see that we lack both the general theory in which it will
be embedded and the description (analogous to differential equations) that could
be interpreted as referring to individual quantum systems. So the corresponding
diagram has two gaps in it

Schrödinger’s equation← X1 theory→ X2 equation

Nelson attempted to fill the gap in his stochastic mechanics programme
(Ghirardiet al., 1978; Nelson, 1985), where forX1 he considered again the the-
ory of stochastic processes and forX2 again stochastic differential equations.3

However, this description cannot account for all quantum phenomena as it vi-
olates Bell’s theorem. In fact, no stochastic process can reproduce all quantum
mechanical predictions (Grabertet al., 1979).

In this talk we are going to show how to fill in the previous diagram, without
diverging from the predictions of standard quantum theory; we are going to write
a class of theories which is modelled on stochastic processes but are not stochastic
processes themselves, since they intrinsically incorporate the appearance of the
complex numbers (or if you prefer aU (1) symmetry). This class of theories we shall
call quantum processes. They have been developed in a chain of argumentation
starting from the consistent histories approach to quantum theory and the presence
of the geometric phase. Quantum processes is theX1 in our previous diagram; they
can be unravelled to write full analogues of the stochastic differential equations,
which could perhaps be interpreted as referring to individual system.

In general, our approach is very close to the ideas about quantum theory, that
Einstein expressed in his later years (Einstein, 1975) (in which it was made clear
that his disagreement with quantum theory was not on reasons of determinism, but
on reasons of realism)

. . . . . .The concept that theψ-function completely describes the physical behaviour
of the individual single system is untenable. (. . . ) But if one regards theψ-function as
the description of an ensemble, it furnishes statements that correspond satisfactorily to
those of classical mechanics and at the same time account for the quantum structure of
reality. . . . . . .

3 He actually considered the Madelung equations that are derived from Schr¨odinger’s equation and the
probability rule.
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In this paper, we demonstrate that this attitude is not forbidden by any non-go
theorem of quantum mechanics; indeed at the mathematical level we can even
write equations that could be interpreted as referring to individual systems. And,
at least for the author, this attitude is in no way incompatible with the basic physical
insights, that were put into the structure of quantum theory by Heisenberg and Bohr.

2. CLASSICAL VERSUS QUANTUM PROBABILITY

Quantum theory was built in the late twenties and by the early thirties its basic
principles and structures had been put in place. During the same period, classical
probability was set in a solid axiomatic framework in the work of Kolmogorov.
Kolmogorov founded probabilistic calculus on measure theory and thus removed
ambiguities plaguing other intuitive approaches to probability. In particular, mea-
sure theory provided a framework, by which the theory of stochastic processes
could be rigorously developed.

This was arguably one of the most important results in twentieth century’s
applied mathematics; in particular, it influenced the more mathematically-minded
people that worked on the foundations of quantum theory. In particular, it was soon
apparent that probability theory and quantum mechanics seemed to share the same
basic “physical” concepts, even if their mathematical implementation is distinct.
Classical probability theory is defined on a sample spaceÄ, which is an ordi-
nary set (often a manifold), while quantum theory is defined on acomplexHilbert
spaceH .

A theory such as classical probability is a mathematical framework by which
physical phenomena can be modeled, so that the statistical results (mean values,
ratios of events) measurements can be predicted. So is quantum theory, at least in
the Kopenhagen interpretation. Both theories employ the notions of

1. Observables: An observable is a physical quantity, whose value we mea-
sure. It is assumed that what we observe can only be a real number, since
it is with respect to real numbers (distances in dials) that we encode all
experimental information. It has to be a single-valued object, so that when
we have a concrete measurement situation there will be no ambiguity as
to the quantity we measure. Classically an observable is a measurable
function onÄ, while quantum mechanically a self-adjoint operator onH .

2. Events: As events we characterize the possible outcomes of individual
experiments: an event corresponds to a property that is verified by an
experiment, e.g. the particle passed through a slit located in that particular
place. Quantum mechanical events are represented by projection operators
and classical ones by measurable subsets of the sample space.

3. States: A state corresponds to the preparation of the physical system, before
the measurement is carried out. As such, it contains information as much
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about the nature of the physical system as about the preparation procedure
that was used for the experiment. A state should be a mathematical object
that would be able to provide all information that can be accessed experi-
mentally. If we think that in experiments we can determine mean values for
observables and (perhaps) probabilities to events, the state should be an ob-
ject that provides these. In classical probability theory a state corresponds
to a probability distribution, while in quantum theory (thanks to Gleason’s
theorem) by a density matrix. Note, however, that in representing the op-
erational notion of the state by such mathematical objects we assumed that
the probabilities that correspond to physical systems satisfy a number of
properties. Most important of them is the additivity condition, that ifA
andB are two independent events thenp(A∪ B) = p(A)+ p(B). This is
a theoretical “prejudice” rather than an axiom that arises naturally out of
the consideration of the measurement processes.

In any case, starting from the work of von Neumann, Birkhoff, Wigner, and Jordan
in the thirties (Birkhoff and von Neumann, 1936; Jordanet al., 1934), an ever
increasing number of mathematical physicists considered quantum theory to be
nothing but a generalized probability theory, i.e. a theory sharing the same basic
objects as classical probability theory. This attitude is apparent in many schemes
of axiomatisation of quantum theory, that want to get rid of the (mathematically)
unintuitive structure of a Hilbert space (while keeping the noncommutativity of
observables), by substituting it with something simpler: algebras of observables
in theC∗-algebraic approach, lattice of propositions in quantum logic(s), convex
state spaces in the operational approach.

However, we still feel the need to ask the question, whetherquantum theory
is nothing but a generalized probability theory.

Our answer here is thatit is not.

The analogy between classical probability and quantum mechanics stops, when
we consider properties of the quantum system at more than one moment of time.
Because in this case

1. Interference phases appear that have no analogue in classical probability
theory. They are closely related to the geometric phases. Most important
of all, they are measured as a statistical object.

2. The probabilities for properties defined on more than one moment of time
arenonadditive.

3. The interference phases and the nonadditive probabilities are closely
related.

4. The natural correlation functions of the observables are probabilities gener-
ically complex-valued.
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It seems that in the case of studying properties at more than one moment of time,
the complex numbers inherent in the structure of the quantum mechanical Hilbert,
space become manifest.

2.1. Nonadditive Probabilities

To explain the nonadditive probabilities in quantum theory let us consider the
following type of experiment. We have a sourceS, which emits some particles (our
individual quantum systems) prepared in a well-defined state|ψ〉. The ensemble of
systems is then represented by a beam; we let this beam cross two filters represented
by P andQ. A filter is an object that lets particles of the beam pass if they satisfy a
certain property or, in other words, if a particular event occurs. In quantum theory
a filter is represented by a projection operator, henceP andQ are projectors.

Now, after the second filterQ the beam falls into a detectorD and we can
measure the particles that have crossed the beams. Note that in the diagram the
distance between the source, the filters and the detector is assumed to represent
time intervals.

If the source emittedN particles and the detector detectedn, then for largeN
the ration/N ought to converge to a given number, which would be the probability
for the particles prepared in the state|ψ〉 to pass through the two filters.

The rules of quantum theory give that this probability must be equal to

p(P, t1; Q, t2) = 〈ψ |P(t1)Q(t2)P(t1)|ψ〉
P(t) : = ei Ht P e−i Ht , (2.1)

where H is the Hamiltonian that describes the self-dynamics of the individual
system (see Fig. 1).
Now consider the following three experiments. In experiment number 1, we put in
as a first filterP1 and as second oneQ. In experiment number 2, we put as a first
filter P2 = 1− P1, i.e. the filter corresponding to the property complementary of
that of P1 and keepQ as a second filter. In experiment number 3, we simply have
filter Q. If we use the rule (2.1) for the measured probabilities we see that

p3 6= p1+ p2. (2.2)

This implies that the quantum mechanical probabilities do not satisfy the additivity
condition. This simple experiment is a manifestation of the more general fact for

Fig. 1. Measurement of probabilities for histories.
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quantum theory:experiments involving properties of the system at more than one
moment of time cannot, in general, be modeled by an additive probability measure.
So quantum probability for histories does not satisfy the basic Kolmogorov axioms
for probabilities.

2.2. Consistent Histories

Well, why would we mind if the probabilities are nonadditive? Nonadditivity
of implies you lose an important rule of inference. Consider that you have two
exclusive eventsA and B, that are also exhaustive (one or the other can happen
and nothing else). If we measure the probability forA and we findp(A) = 1, then
we can be certain that the eventB would never occur in any repetition of this
experiment, sincep(B) has to equal zero. If probabilities are nonadditive, then the
fact thatp(A) = 1 does not imply thatp(B) = 0 and the eventB would take place
in the experiments with nonzero frequency.

In a nutshell, even if the probability of an event is 1, we cannot preclude that its
complement will never happen. Is this so bad? Not really if we have an operational
stance, that quantum theory describes experiments in ensembles. However, it could
be problematic if one wants to claim that the present formalism of quantum theory
provides a theory for individual closed systems, because it would dramatically
limit its predictability.

One way to resolve this problem (assuming it is a problem) is the consistent
histories approach. This was developed by Griffiths (1984), Omn´es (1988, 1992,
1994), Gell-Mann and Hartle (1990, 1993; Hartle, 1993). This work is motivated
from its elegant formulation that has been developed by Isham (1994; Ishamet al.,
1998; Isham and Linden, 1994, 1995) and Savvidou (1999, 2002).

As far as this issue goes, the key idea of the consistent histories approach is
that one can have additive probabilities if one is restricted within particular sets of
histories, known asconsistent sets. More precisely

1. A general historyα is represented by a collection of projection operators
αti at successive instants of time

α = (αt1, αt2, . . . , αtn

)
, . (2.3)

2. From these operators we can define an operatorCα = αtn(tn) . . . αt2(t2)αt1
(t1) and a complex-valued functional on pairs of histories

d(α, β) = Tr(Cαρ0C†β). (2.4)

This is known as the decoherence functional.
3. If in a exhaustive and exclusive set of histories

d(α, β) = 0, α 6= β (2.5)
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thend(α, α) is a probability for the historyα and corresponds to an additive
probability measure. The satisfaction of condition (2.5) renders a set of
histories consistent.

The additivity of probabilities in each consistent set allows us to use the fact that
probability one for an event means probability zero for its complement. This can
be exploited to define the logical/physical notion for implication. The idea is that
if we get by measurement a definite result for anindividualsystem, we can employ
the definability of this implication to identify other properties that this system has
satisfied. However, implication is defined only within given consistent sets; hence
when we employ implication in different consistent sets we can derive contrary
results from the same definite (measured) event. This is a more general problem of
realist interpretational schemes4 and is related to the Kochen–Specker theorem.

However, theformalismof consistent histories makes sense irrespective of
the interpretation: it can equally well be considered in a Copenhagen framework,
in which we are content to provide predictions for outcomes of ensemble mea-
surements. The merit of the formalism lies in the fact that it allows the description
of quantum systems usingcovariant objects(histories) (Hartle, 1993). As such it
seems more adequate to deal with basic problems in the quantization of the gravita-
tional field, such as the problem of time (see Savvidou, 2001, for this perspective).
Moreover, the object that was introduced by the consistent histories approach, the
decoherence functional is very convenient: it will be shown to contain the full in-
formation that can be extracted from a quantum process, even its nonprobabilistic
aspects.

2.3. Complex-Valued Correlation Functions

Whenever we have a probabilistic system, there is a well defined prescription
by which thetemporal correlation functionscan be determined. Assume we have
an observableA, that can be spectrally analysed asA =∑i ai Pi , wherePi are
filters that can be experimentally employed. Now we repeat the experiment in
Fig. 1 with Pi for P andPj for Q for all possible combinations ofi and j . We can
then measure the probabilitiesp(i , t1; j , t2).

The statistical correlation function is then〈
At1 At2

〉
s=

∑
i j

ai aj p(i , t1; j , t2). (2.6)

It is clearly a real number. However, it is an object that cannot be naturally written
in terms of the operatorsA. Moreover, it depends sensitively in the resolution of

4 In our use, we employ the word realist to denote the attitude that the quantum mechanical formalism
refers to properties of individual systems.
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the observable in terms of the spectral projections (unlike statistical correlation
functions in classical probability theory).

From quantum theory the natural object for the correlation function (that does
not depend on the spectral resolution of the observable) is〈

At1 At2

〉
Q = 〈ψ(t1)|Aei H (t2−t1) Ae−i H (t2−t1)|ψ(t1)〉, (2.7)

or the corresponding time-ordered function.
This is generically a complex-valued object and has no natural operational

interpretation as the statistical correlation function.
We should remark that temporal correlation functions have actually been mea-

sured in quantum optics (see for instance, Walls and Milburn, 1994). In that case
the relevant observable is the photon number; this, however, commutes with the
electromagnetic field’s Hamiltonian. This implies that the statistical and quantum
correlation functions coincide.

So one may pose the question,why does quantum theory give as natural
correlation functions, ones that are not operationally implementable?This is not
a very sharp question, as the answer might be simply that there is no a priori reason
to expect that it would be otherwise. However, we are going to show that there is
a deeper reason and this is that quantum correlation functions have information
from measurable quantities that do not correspond to probabilities:interference
phases.

3. INTERFERENCE PHASES

The point is that quantum theory predicts other physical quantities that can
be determined statistically, but are not probabilities. These are the quantum phases
and more precisely the geometric phases, paradigmatic example of which are the
Bohm–Aharonov (Aharonov and Bohm, 1959) and the Berry phase (Berry, 1984).

Let us recall the measurement of the Bohm–Aharonov phase (see
Fig. 2).
The basic configuration is that of a two-slit experiment. We let a prepared state
of electrons cross through two slits and then measure the interference pattern on
a screen. Having stored that in memory, we repeat the experiment by putting a
solenoid (with some magnetic flux) behind one of the slits (such that the beam
does not cross it). We observe a shift into the interference pattern, which is es-
sentially proportional to the Bohm–Aharonov phase induced by the magnetic
flux.

Two remarks must be made for this experiment, that are valid for all ex-
periments measuring geometric phases. First, that the Bohm–Aharonov phase is
a statisticalobject: it is measured in terms of an interference pattern, which is
present only when a large number of electrons (thought of as corresponding to a
statistical ensemble) are left to interfere. If we carried out the experiment with a
single electron, there would be nothing to measure.
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Fig. 2. Determination of the Bohm–Aharonov phase.

The second remark is that the geometric phase can be determined from the
study of the interference of two beams with different history. This is reminiscent
of the decoherence functional, which assigns a complex-valued object to a pair
of histories. This suggests that the decoherence functional is somehow related
to the geometric phases. This loose connection will turn out to be very precise:
we can show that the decoherence functional is actually constructed from the
mathematical object that is responsible for the presence of geometric phases: the
Berry connection5 (Anastopoulos and Savvidou, 2002).

More strongly, we can explicitly describe, how the off-diagonal elements of
the decoherence functional can be explicitly measured; the corresponding
measurement scheme is identical to the ones used for the determination of
another version of the geometric phase, known as thePancharatnamphase
(Pancharatnam, 1956; Samuel and Bhandari, 1988). This phase essentially cor-
responds to the argument of the inner product between two statesφ〉 and|ψ〉. It is
manifested in the following generic situations

1. Prepare two systems in the states|ψ〉 and|φ〉.
2. Perform on the beam corresponding to|ψ〉 the operation|ψ〉 → eiχ |ψ〉

for a controlled value ofχ .
3. Interfere the two beams to construct the beam| f 〉 = |φ〉 + eiχ |ψ〉 and

measure its intensityI = 〈 f | f 〉.
4. Repeat the experiment for the range of all values ofχ and construct the

function I (χ ) giving the intensity of the measured beam as a function of

5 This is aU (1) connection on the fiber bundle with base space the projective Hilbert space and total
space the Hilbert space of a quantum system (Aharonov and Anandan, 1987; Simon, 1983).
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Fig. 3. Measurement of the off-diagonal elements of the decoherence functional.

the external parameterχ . This equals

I (χ ) = 2|〈ψ |φ〉| cos(χ − arg〈ψ |φ〉) (3.1)

5. I (χ ) takes its maximum value forχ = arg〈ψ |φ〉. This value ofχ is the
Pancharatnam phase between the two beams.

This procedure to measure the Pancharatnam phase has been performed in neutron
interferometry (Waghet al., 1998). The difficult part is to perform step 2, i.e. to
have a controlled way to change the phase of an individual quantum state. This
can be achieved if|ψ〉 is an eigenstate of a Hamiltonian (so that the phase only
depends on the number of periods the beam is left before interference).

Assuming that there is a prescription by which this phase change can be
performed, the above prescription can be used to measure the off-diagonal elements
of the decoherence functional (see Fig. 3).
Let us assume we have a sourceSpreparing particles in a state|ψ〉. After exitingS,
the beam enters a beam splitter B.S. One of its components then enters a sequence
of filters αt1 . . . αtn and the other a sequence of filtersβt ′1 . . . βt ′m, before they are
recombined at C. The beam then propagates to a screen, where its intensity is
measured. Now we repeat this experiment many times, but at each time the second
component of the split beam has to pass through P.O. which performs the operation
of phase change|ψ〉 → eiχ |ψ〉. Repeating the experiment for different values of
χ , we get a functionI (χ ), whose maximum determines a phase that is the argument
of the value of the decoherence functional between the histories (αt1 . . . αtn) and
(βt ′1, . . . , βt ′m). The modulus of the phase of the decoherence functional can easily
be determined by the maximum value ofI (see, Anastopoulos, 2002, for details).
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In fact, it can be shown that the decoherence functional contains all in-
formation that can be obtained from experiments measuring either probabilities
or relative phases. The name decoherence functional is then, rather misleading.
Gell-Mann and Hartle introduced it as the object that provides information about
decoherence of histories. However, its most important function is that it contains
the information of the relative phases, hence of coherence of histories. For this
reason a more adequate name for it would be the coherence functional or the phase
functional.

It can also be shown that the complex-valued temporal correlation functions
can in principle be determined by the measurement of a sufficiently large num-
ber of interference phases as described above. In effect, if one can determine
the off-diagonal elements of a decoherence functional between a historyαi j =
(Pi , t1; Pj , t2) and the trivial historyβ = 1, then for the observableA =∑i ai Pi

the time-ordered two-point function will read〈
At1 At2

〉
Q
=
∑

i j

ai aj d(αi j , 1), (3.2)

This gives an operational scheme for the determination of the quantum corre-
lation functions through measurements analogous to the one performed for the
Pancharatnam phase. The reader is referred to Anastopoulos (2001a) for details.

4. A FRAMEWORK FOR QUANTUM PROCESSES

4.1. Phases as Primitive Ingredients

Usually any discussion of the principles of quantum theory consider proba-
bilities as the basic objects that are predicted by the formalism. But, as we showed
there is good reason to consider (also) the phase as primitive ingredients of the
formalism. We can then attempt to write an axiomatic scheme that achieves this.

In that case, we must accept that the probabilities of the corresponding quan-
tum theory are nonadditive, hence do not satisfy the Kolmogorov axioms. Ac-
cepting nonadditive probabilities has important consequences for the structure of
the resulting quantum theory. The theorems of Bell (1964) and Kochen–Specker
(1967) that forbid hidden variable theories of reproducing the predictions of quan-
tum theory assume that the corresponding hidden variable theories are either deter-
ministic or stochastic. They do not forbid hidden variable theories that are modeled
by a statistical theory that is not described by Kolmogorov probability.

Hence, by accepting phases as primitive ingredients of our formalism, we
might be able to write a theory that reproduces the predictions of quantum me-
chanics, while having observables like any classical theory, purely commutative
objects. This is indeed possible and we showed that in reference (Anastopou-
los, 2001a) by simply employing the Wigner transform on the standard quantum
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mechanical decoherence functional. In other words, the Hilbert space structure and
the corresponding non-Boolean (and nondistributive) nature of the events (usually
referred to as quantum logic)is not necessary in a theory that takes phases as
primitive ingredients.

Such a theory needs a mathematical structure analogous to that of a decoher-
ence functional over a classical sample space. We shall explain in detail how such
theories are formalized and constructed: we shall call them theories ofquantum
processes, because their mathematical structure is in many respects analogous to
the theory of stochastic processes.

We will not attempt to write any interpretation of quantum theory different
from Copenhagen; we shall take a strictly operational stance and simply consider
that the theories of quantum processes refer only to measurement situations and the
probabilities and relative phases always make reference to ensembles of individual
quantum systems. We should, however, point out that our longer term perspective
is realist: we want to find a way to talk about the physics of individual quantum
system. The present is not, however, a good moment for this purpose.
Choosing the sample space: If we want to write a theory that reproduces the results
of quantum mechanics, while having a classical sample space, we need to specify
what this sample space would be. One could take the stance that the proper quantum
mechanical sample space consists of variables very different from the ones that are
naturally apparent to us: the true degrees of freedom refer to a subquantum level
of reality, quite removed from standard physics (as for instance in ’t Hooft, 1999).

We shall take a more conservative approach here. He shall consider that the
sample space is essentially the phase space of the corresponding classical system.
There are three reasons for our choice:

1. We can show that a theory of quantum processes on the classical phase
space allows us to fully reproduce the predictions of standard quantum
theory (this is an a posteriori argument).

2. Symplectic manifolds have a very rich geometric structure, that allows
us to reproduce many classic quantum mechanical results that seem to
need a priori the notion of the Hilbert space. Such is the case for Wigner’s
classification of particles (from the geometric quantization of Konstant–
Souriau (Souriau, 1997)) and many aspects of the spin-statistics relation
(Anastopoulos, 2001b).

3. One of our motivation for undertaking this line of research is the attempt to
write a quantum theory that has a pronounced spacetime character. In the
closely related scheme of histories quantization, Savvidou showed that in
the space ofphase space historiesone can always implement a symplectic
action of the group of spacetime diffeomorphisms (Savvidou, 2001) (in the
case of general relativity it coexists with the algebra of constraints obtained
by the 3+ 1 decomposition). This is a very important part for any quantum
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theory that wants to manifest the principle of general covariance and holds
only for phase space histories (not configuration space ones).

These are the reasons that makes us consider the phase space histories as defining
the basic sample space of quantum theory. Our arguments are sufficient to establish
the naturality of our choice; of course, they are not necessary as they are directed by
choices related to our long-term aims. In any case, the formalism we shall present
makes sense for any possible sample space.

4.2. The Basic Axioms

4.2.1. Sample Space, Events, Observables

At the level of observables, the structure of our theory is identical with that
of classical probability theory. That is, we assume the existence of a spaceÄ of
elementary alternatives. A point ofÄ corresponds to the most precise information
one can extract from a measurement of the quantum system. Note, that at this level
we do not distinguish, whetherÄ refers to properties of a systems at one moment
of time or to histories. Our definitions are general and only later shall we specify
the history content.

This spaceÄ has to be equipped with some additional structure. In general,
a measurement will yield some information stating that the system was found in a
given subset ofÄ. But not all subsets ofÄ are suitable to incorporate measurement
outcomes. For instance, when we consider position it is physically meaningless
to consider the subset of rational values of position (with respect to some unit).
One, therefore needs to choose a family of subsetsC of Ä, that correspond to the
coarse-grained information we can obtain about the physical systems. These sets
are often calledevents. The familyC containing the events has to satisfy some
natural mathematical conditions

i. Ä ∈ C: if an experiment is performed one of the outcomes will occur.
ii. 0/ ∈ C: it is impossible that no outcome results if an experiment is per-

formed.
iii. If A ∈ C, thenÄ− A ∈ C: if A is a possible measurement outcome then

so can be its complement.
iv. If A, B ∈ C, thenA∪ B ∈ C andA∩ B ∈ C: unions and intersections of

experimental outcomes are also possible experimental outcomes.
v. For countably manyAn ∈ C, n = 1, 2,. . . , ∪∞n=1 ∈ C. This is a technical

condition particularly relevant when dealing with the case whereÄ is a
manifold.

EquippingÄ with a choice of events turns it into ameasurable space.
Since in experiments we eventually come to measure real numbers (or occa-

sionally integers, which can be embedded into the real numbers) the mathematical
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object that would represent the notion of observable is a map fromÄ to R. How-
ever, not all possible maps will do: the structures corresponding to measurable sets
have to be preserved. Such functions are calledmeasurableand in the language of
probability theory are known asrandom variables. We shall denote the space they
belong to in asF(Ä).

Among all functions, important are characteristic functions of the various
subsets ofÄ. These are defined as

χA(x) = 1, x ∈ Ä (4.1)

= 0, x /∈ Ä (4.2)

An important property of the characteristic functions is the following. Ifλ is a
possible value of a random variablef andAλ = f −1(λ), then it is evident

f =
∫

dλλχAλ . (4.3)

4.2.2. The Decoherence Functional

A decoherence functional86 is a map fromC × C → C, such that the fol-
lowing conditions are satisfied

B1. Null triviality : For anyA ∈ C,8(0/, A) = 0.
In terms of our interpretation of the off-diagonal elements of the decoherence
functional as corresponding to Pancharatnam phases, there can be no phase
measurement if one of the two beams that have to be interfered is absent.

B2. Hermiticity: For A, B ∈ C,8(B, A) = 8∗(A, B).
Clearly the phase difference between two histories becomes opposite if we
exchange the sequence, by which these histories are considered.

B3. Positivity:For anyA ∈ C,8(A, A) ≥ 0.
This amounts to the fact that the diagonal elements of the decoherence functional
are interpreted as probabilities (albeit nonadditive). Operationally probabilities
are defined by the number of times a particular event occurred in the ensemble
and by definition they can only be positive.

B4. Normalization:8(Ä,Ä) = 1.
Clearly, if no measurement takes place the intensity of the beam would never
change.

B5. Additivity: If A, B, C, ∈ C, andA∩ B = 0/, then8(A∪ B, C) = 8(A, C)+
8(B, C).

6 Note that we changed notation for the decoherence functional fromd, which is the standard in the
bibliography to8 and was employed in the previous sections. This was done for reasons of notational
convenience (d tended to be confused with differentials). The letter8 stands for phase.
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There is no intuitive operational reason, why this should be the case. This
property is equivalent to the superposition principle of quantum theory and
we can consider that it is forced upon us by experimental results. Of course, this
is the property that makes the decoherence functional the natural object to use.

B6. Boundedness:For all A, B ∈ C, |8(A, B)| ≤ 1.
This arises from the operational procedure for the determination of|8(A, B)|
(Anastopoulos, 2002).
These axioms are an adaptation of the axioms written by Isham and Linden
(1994) for the case of consistent histories.

There are two points one needs to make regarding these axioms. First, the
properties of8 are identical to the matrix elements of a density matrix over some
continuous basis (if this is identified withÄ). So the difference of quantum from
stochastic processes is that they have a density matrix rather than a probability
measure over the sample space of histories.

The second point is that the properties of the decoherence functional are
these of a complex probability measure onÄ×Ä. So we need not construct
any different mathematics for the development of the theory: standard measure
theory will suffice. In particular, we can use the Radon–Nikodym and Kolmogorov
theorems that are very important in classical probability theory. Since8 acts on
events its action can be extended to all measurable functions onÄ, i.e. we can
write it as a map8 : F(Ä)⊗ F(Ä)→ C.

Now, if onÄ there is a Lebesque measuredx, we can write8 in terms of s
densityv, i.e.

8(dx, dx′) = v(x, x′) dx dx′. (4.4)

In the trivial case thatÄ refers only to a moment of time, it is easy to see that
v is written in terms of the density matrix as

v(x, x′) = ρ(x, x′)δ(x, x′) (4.5)

in a continuous basis (like position) or

v(x, x′) = 〈z|ρ|z′〉〈z′|z〉, (4.6)

in an overcomplete basis like the coherent states.

4.3. Quantum Processes

We are interested in the nontrivial case, wheneverÄ is a space of histories,
i.e. it is a suitable chosen subset of×t0t . We shall assumet to take values in some
interval of the real line, or the real line itself. An element ofÄ will then be a path
on0 and will be written written asz(·).
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Given a functionf on0, we can define a family of functionsFt onÄ indexed
by t as

Ft [z(·)] = f (z(t)). (4.7)

In analogy with the definition of a stochastic process, aquantum processis
defined as a triple (Ä,8, Fa

t ), where

– Ä is a path space
– 8 is a decoherence functional satisfying the relevant axioms
– Fa

t is a selected family of observables indexed byt (not necessarily of the
type (4.7)).

From the specification of the family of observablesFa
t we can define the mixed

correlation functionsGn,m as

Gn,m(a1, t1; a2, t2; . . . ; an, tn|b1, t ′1; b2, t ′2; . . . ; bm, t ′m)

= 8
(

Fa1
t1 Fa2

t2 . . . F
an
tn , Fb1

t ′1
Fb2

t ′2
. . . Fbm

t ′m

)
. (4.8)

Here Gn,0 are the time-ordered correlation functions,G0,m are the anti-time-
ordered andGn,m ones containing mixed entries.

From the hierarchyGn,m of correlation functions associated toFa
t we can

define the corresponding generating functionalZF [ J+, J−], which is written in
terms of the sourcesJa

+(t), Ja
−(t) as

ZF [ J+, J−] =
∞∑

n=0

∞∑
m=0

i n(−i )m

n!m!
×

∑
a1,...,an

∑
b1,...,bm

∫
dt1 . . .dtn dt′1 . . .dt′m

×Gn,m(a1, t1; . . . ; an, tn|b1, t ′1; . . . ; bm, t ′m)

× Ja1+ (t1) . . . Jan+ (tn)Jb1− (t ′1) . . . Jbm− (t ′m) (4.9)

This is known as the closed-time-path (CTP) generating functional. It was
first introduced by Schwinger (1961) and Keldysh (1964). It is particularly relevant
to the discussion of systems, in which there does not exist the symmetry of time
translation (open quantum systems, field theory in curved spacetime etc). Clearly
the CTP generating functional can be written as

ZF [ J+, J−] = 8(ei F ·J+, e−i F ·J−), (4.10)

whereF · J± := ∫ dt
∑

i F i
t J±(t).

Defining8,Ä is in general a path space. In order to define8 on it, we treat
it as a complex measure and employ an analogue ofKolmogorov’s theoremfor
probability measures on path spaces. Namely, that8 is uniquely determined by
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the discrete-time versions of the decoherence functional: i.e. by a hierarchy of
distribution functions

vn,m(z1, t1; z2, t2; . . . ; zn, tn|z′1, t ′1; z′m, t ′m) (4.11)

The functions of this hierarchy need to satisfy the(Kolmogorov) additivity condi-
tion:∫

dzn+1vn+1,m((z1, t1; z2, t2; . . . ; zn, tn; zn+1, tn+1|z′1, t ′1; z′2, t ′2; . . . ; z′m, t ′m)

= vn,m(z1, t1; z2, t2; . . . ; zn, tn|z′1, t ′1; z′2, t ′2; . . . ; z′m, tm). (4.12)

The point is that a measure (hence a decoherence functional) for the
continuous-time case can be determined by the specification of only discrete-time
expressions.

4.4. The Kinematical Process

One can construct quantum processes starting from standard quantum theory,
by employing the coherent states. In general, the coherent states provide a from
a symplectic manifold0 to the projective Hilbert space:z ∈ 0→ |z〉〈z|. If f is
a function on0 then one can define a corresponding operator on the Hilbert
space as

A =
∫

dz f(z)|z〉〈z|. (4.13)

This is not the only choice, but as we shall see it is the most natural.
We want first to define thekinematical process, i.e. the quantum process that

corresponds to a system with vanishing Hamiltonian.
Having0 one can define the spaceÄ of continuous paths on0 and the family

of functionsFa
t associated to thef a of Eq. (4.13). All that is missing from the

definition of a quantum processes is the specification of a decoherence functional.
This is achieved by specifying the hierarchy of ordered distribution functionsvn,m.
To do so, we write the time instants in terms of their orderingt1 ≤ t2 ≤ . . . tn, and
t ′1 ≤ t ′2 ≤ . . . ≤ t ′m. If we write α̂z = |z〉〈z| we will have

vn,m
z0

(z1, t1; z2, t2; . . . ; zn, tn|z′1, t ′1; z′2, t ′2; . . . ; z′m, t ′m)

= Tr (α̂zn α̂zn−1 . . . α̂z2α̂z1α̂z0α̂z′1 . . . α̂z′m−1α̂z′m)

= 〈z′m|zn〉〈zn|zn−1〉 . . . 〈z2|z1〉〈z1|z0〉〈z0|z′1〉〈z′1|z′2〉 . . . 〈z′m−1|z′m〉.
(4.14)

Let us now note the following concerning the kinematical process.
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1. The expression for the distribution function factorizes in products of the
form〈z|z′〉. The knowledge of this inner product, suffices to fully determine
the kinematical process. In fact, the distribution functionvn,m is known as
then+m+ 1 Bargmann invariant (Mukunda and Simon, 1993).

2. The distributionsvn,m do not depend on the values of timet , only on their
ordering. The same is true fort ′. More than that, if we consider the fol-
lowing cyclic ordering for the time instantst0→ t1→ t2→ . . . → tn→
t ′m→ . . . → t ′2→ t ′1→ t0, the distributions are invariant if we consider
any time as origin and then proceed cyclically along the arrows. In other
words, the kinematic process manifests the symmetry of aclosed time
path.

3. Unlike stochastic processes, in which the kinematical process is trivial
(the hierarchy of distribution functions consists only of products of delta
functions), quantum processes manifest all quantum mechanical behaviour
(interferences etc) already at the kinematical level. The introduction of dy-
namics requires only the minor modification of substituting〈z|e−i H (t−t ′)|z〉
〈z|z′〉 in Eq. (4.14).

4. Let us consider that the process being defined in the time interval [0,τ ]
and consider the distribution functionvn,m for large values ofn andm.
Take for simplicityn = m= N. Choose also the time instants such that
|ti − ti−1| ≤ δt = τ/N for all i and similarly fort ′. Also, lettn = t ′m = τ .
Then we have a discretised approximation to a decoherence functional for
continuous pathsz(·), z′(·) which for N →∞ would converge to

8(z(·), z′(·)) = e−i
∫

C〈z|d|z〉 + O(δt2) = ei
∫

C A + O(δt2), (4.15)

whereC is the closed path obtained by appending the pathz′(·) with reverse
orientation at the end ofz(·). The distribution function for the decoherence
functional then converges at the largeN limit to the holonomy of aU (1)
connection on0, the same geometrical object that is introduced in the
geometric quantization scheme. Of course, this convergence is to be inter-
preted with a grain of salt as the support of the decoherence functional is
primarily not on differentiable paths, for which the holonomy is rigorously
defined.

4.5. Quantum Differential Equations

In any theory that is based on histories, one can sharply distinguish be-
tween two different aspects of temporal symmetries. This has been pointed out by
Savvidou (1999) and forms one of the basic features of the histories quantization
programme. We can define a purely kinematical time translation, by which the
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time translation is effected as

Ft → ft+s, (4.16)

and there exists the dynamical time-translation generated by the Hamiltonian.
These are completely distinct and correspond to the different functions of the notion
of time in the physical theory (causal ordering/kinematics vs. change/dynamics).

As we showed earlier, the characteristic quantum mechanical behavior exists
already at the kinematical level and the decoherence functional depend only on the
causal ordering of the events constituting the histories. We are, therefore, tempted
to take the kinematical process as basic and seek to write a general quantum process
in terms of it. In effect, we want to view the kinematical process as the analogue of
the Wiener process in classical probability theory: a general object through which
any other process can be defined.

In classical stochastic processes the relation between a processx and the
Wiener processW7 is expressed in terms ofstochastic differential equations,
known in physics as Langevin equations. They are, in general, of the form

dxa + f a(x) dt = dWa(t). (4.17)

In effect the Wiener term acts as a random driving force on a deterministic
equation.Can we do the same for the case of the quantum processes?

It turns out that we can. Using explicitly the distinction between the kine-
matical and dynamical time translations, we referred to earlier we can write an
analogousquantum differential equation:

dza + f a(z) dt = dξa(t), (4.18)

whereza are variables (coordinates on0) undergoing a quantum process with a
given HamiltonianH , f a are some particular functions on phase space depending
on the Hamiltonian (Anastopoulos, 2002) andξa are variables on the phase space
(the same functions asza) but corresponding to akinematical process. As in the
classical case, the differentials havet be interpreted with care as in general the
sample pathsza

t are not differentiable. This equation is written at the same level
of rigor as the standard stochastic differential equations.

In line with Einstein’s remark we gave in section 1, we want to remark on the
appealing possibility that Eq. (4.18) can be interpreted as referring to an individual
system in analogy to the classical Langevin equations. That is, we can consider
that Eq. (4.18) refers to an individual system (a particle), which is found within
a “fluctuating environment,” that induces the “random forces”ξ̇a(t). However,
these forces are not distributed according to a classical probability distribution,
but according to the kinematic processes (and are possibly geometrical in origin).

7 Denoting the Wiener process asW is a shorthand: the Wiener process refers to the underlying sample
space, the particular probability measure and the basic variablesWa.
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We are not in a position to argue, whether this interpretation of Eq. (4.18)
should be taken seriously or not. The reasons are partly mathematical and partly
physical: from the mathematical side we need to verify that such equations are more
than empty symbols: is it actually a type of equation that can admit solutions? We
hope to justify such equations by adopting the theory of stochastic integrals (of
Ito) in the quantum context. From a physical point of view, even though we are
committed to finding a description for the individual quantum system, the picture
of a particle moving under random forces is not necessarily our first choice: it is
too classical and there is no geometric naturality (the functionsf in Eq. (4.18)
have no apparent geometric interpretation).

Nonetheless, Eq. (4.18) has large theoretical interest: itdemonstratesthat it is
possible in principle to unravel the statistical description of quantum theory into a
description of individual system. The description in terms of quantum differential
equations may not be fundamental, it probably is not the physically correct way
to approach individual system, but itproves a point: a description of individual
quantum systems that fully agrees in the ensemble statistics with standard quantum
theory is not impossible.

Moreover, we would like to see, whether it would be possible to simulate its
solutions numerically as we can do with stochastic processes. This would provide
a way of generating actual trajectories for individual quantum systems.

5. RECONSTRUCTION THEOREM

In the previous section, we showed how to obtain quantum processes starting
from quantum theory. Now, we want to invert this procedure and ask how one
can obtain standard quantum theory starting from a generic quantum process, that
satisfies the axioms stated in section.

Our result is simpler than we expected. We essentially found that we can
uniquely determine the quantum mechanical Hilbert space, the observables and
the evolution equations from the ingredients of a quantum process, if this process
satisfies the (analogue of ) theMarkov property. The Markov property roughly
states that if the state of the system (i.e the restricted decoherence functional
at a moment of time) is completely specified, then it contains sufficient infor-
mation to determine the state of the system at any subsequent moment of
time.

The Markov property implies (this is often taken as its defining property) that
the distribution functions that define decoherence functional can be written as

vN+1,N+1(z0, t0; z1, t1; . . . ; zN , tN−1|z′0, t0; z1, t1; . . . z′N−1, tN−1)

= v(zN , z′N ; tN |zN−1, z′N−1; tN−1) . . . v(z1, z′1; t1|z0, z′0; t0)ρ0(z0, z′0), (5.1)
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in terms of a propagatorv(z1, z2; t |z′1, z′2; t ′) and an initial “state” att = 0.8

The propagatorv needs to satisfy thequantum Chapman–Kolmogorov equa-
tion:

v(z1, z′1; t |z0, z′0; s) =
∫

dz dz′v(z1, z′1; t |z, z′; s′)v(z, z′; s′|z0, z′0; s). (5.2)

Now, what we have proven is areconstruction theorem, which can loosely be
stated as follows.

Reconstruction theorem. Assume we have a stochastic process(Ä,8,
Fa

t ), that satisfies the Markov property. If in addition

i. the propagator is a smooth function of its arguments and the time entries,
ii. the process is time-homogeneous,

iii. the process is time-reversible,
then we can reconstruct the quantum mechanical Hilbert space and the
Heisenberg evolution equations.

Sketch of the proof: Time homogeneity means that the propagator depends
only on the time differencet − t ′ hence can be written asvt (z1, z2|z′1, z′2). Time-
reversibility is defined asv∗t (z1, z2|z′1, z′2) = v−t (z1, z2|z′1, z′2). It is easy to show,
that this implies thatv is factorised asvt (z1, z2|z′1, z′2) = ψt (z1|z′1)ψ∗t (z2|z′2), in
terms of another kernel that also satisfies a version of the Chapman–Kolmogorov
equality

ψt (z|z′) =
∫

dz′′ψt−s(z|z′′)ψs(z
′′|z′). (5.3)

The condition (i) is important. It ensures that whent → 0, ψ remains a nice
(i.e. differentiable) function (not a distribution), sayχ (z|z′) := ψ0(z|z′)) hencethe
kinematical process will not be trivial. In this case the Chapman–Kolmogorov
identity states that

χ (z|z′) =
∫

dz′′χ (z|z′′)χ (z′′|z′), (5.4)

henceχ defines a projection operatorE onL2(0). The range ofE is the quantum
mechanical Hilbert spaceH . Moreover, the dynamics encoded inψt correspond
to an one-parameter group of unitary transformations that commutes withE and
can thus be projected onH giving rise to Hamiltonian evolution.

8 Note that we have written only the diagonal elements of the hierarchy of functions. But it can be
easily shown that they can be used to construct the full hierarchyvn,m by virtue of the Kolmogorov
additivity condition.
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One can also use a standardGNSconstruction (Klauder and Skagerstam,
1985) to construct a family of coherent states|z〉 on H such that

〈z|z′〉 = χ (z|z′). (5.5)

In this case a functionf on0 is mapped into an operatorA = ∫ dz|z〉〈z|. In
particular, a phase space cellC is mapped to a positive operatorPC =

∫
C dz|z〉〈z|.h

One remark needs to be made at this point. Our procedure so far is axiomatic and
not constructive. If one wants to explicitly construct the quantum process one needs
to write the coherent states propagator. This can be rigorously defined by a phase
space path integral, in which the Planck’s constant enters through a Riemannian
metric on the phase space that is employed for regularisation (Klauder, 1988,
1995).

6. INTERPRETATIONAL ISSUES

The difference between quantum processes and standard quantum theory lies
only in the determination of which object correspond to sharp events. Quantum
mechanics admits projection operators, while the theory of quantum processes
admits phase space cells. These are represented by a positive operator-valued-
measureC→ Ĉ = ∫C dz|z〉〈z|, for any measurable subsetC of 0.

The question then arises, which of the basic principles of quantum theory
is (are) violated by this change and whether this violation has empirical conse-
quences.

It can be shown (Anastopoulos, 2002) that the only difference between the
theory of quantum processes and standard quantum mechanics is (what we shall
call) thespectral principle

The possible values for an observable correspond to the points of the spec-
trum of the corresponding operator.

It is a corollary of this postulate, that a proposition about possible values of an
observable is represented by a projection operator.

Now, in a quantum process the spectrum of an operator is simply not relevant
to the values of the corresponding observable, because at the fundamental level
observables are functions on the history spaceÄ. Clearly there is little difference
as far as observables with continuous spectrum are concerned (position, momen-
tum etc). The difference lies, of course, in the case of observables with discrete
spectrum.

The case of discrete spectrum is, in fact, what has given quantum phe-
nomena their name, as it is this through the discrete spectrum of operators that
the paradigmatic quantum behavior is manifested: historically it was the black
body radiation, the photoelectric effect and the Bohr’s atom transitions that put
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discreteness as a basic feature of the new mechanics. For this reason the spec-
tral postulate was highlighted in all early work of quantum theory: it provided a
simple solution to the problems that had faced a generation of physicists. Later
mathematical development—namely the spectral theorem—offered this postulate
the additional justification of mathematical elegance.

It would seem that this is one of the most solid postulates of quantum me-
chanics, the last one to be taken away from any possible modification of the theory.
After all it provides the solution to the physical puzzles that led to quantum me-
chanics. However, as we are going to argue it is the postulate of quantum theory
that isleastjustified empirically, when taken by itself.

To see this we shall consider the case of atom spectroscopy, which has been
historically the main arena justifying the spectral postulate. When we study the
electromagnetic radiation emitted from atoms, we see that the intensity of the
electromagnetic field has peaks in particular discrete values of the frequency. Then
assuming energy conservation, the photons are viewed as arising from a transition
between two “states” of an atom, each of which is characterized by a sharp value of
energy. The fact that we measure a number of sharp peaks rather than a smoother
distribution of field intensity plotted versus frequency, leads to the conclusion that
the possible values of atom’s energy are discrete. If we take that this experiment
measures the energy of the atom, then we have discrete values for the energy,
something that is naturally explained in terms of the spectral postulate: in any
individual measurement only points of the spectrum of the operator are obtained.

We believe that this is a fair summary of the argument that leads to the
acceptance of the spectral postulate in this particular context. We shall now see,
that the conclusions of the argument is by no means necessary. Let us first make
the too obvious remark, that the measurement of the intensity peaks never yields
sharp values, rather only peaks with finite width. The width is due not only to
experimental errors, but comes fundamentally from the time–energy uncertainty
relation. Hence, it is only in an idealization that the atom’s energy values are
discrete.

However, the most important argument is that the description in terms of atom
transitionsis semiclassical rather than quantum. What we measure in spectroscopy
is the energy/frequency of the electromagnetic field. We typically assumed that
the emitted photons are incoherent (both in the classical and the quantum sense),
so that the emitted electromagnetic field can be considered as an ensemble of
photons. Then, we can idealize the experiments as setting filters that allow only very
narrow frequency (energy) range to pass and measure the intensities. The whole
experiment is then fully described by energy measurements of the photons. One can
give an equivalent description in terms of the electromagnetic fields. So the actual
observables that correspond to the set-up of the experiment is photon energies or
fluxes,not atomic energies. And these energies can be described by continuous
variables in either quantum theory or in the quantum process description.
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The attribution of discrete energy values to the atom comes from a semiclas-
sical picture of the atom/field interaction; it involves a mixture of old quantum
theory concepts (orbitals, transitions), with the framework of mature quantum the-
ory. This picture is helpful for calculations, it provides an intuitive picture of the
interaction, but it is not fundamentally quantum mechanical. A precise treatment
ought to consider the combined system fieldatom, interacting perhaps through
QED and then consider energy measurements of the electromagnetic field at par-
ticular spatial locations. In such a description all information about the process
(including the atom’s eigenvalues) would be found in the correlation functions
of the electromagnetic field:but these are predicted by quantum processes in full
agreement with standard quantum theory.

What we imply by this argument, is that historically the discrete values of
observables actually refer to the spectrum of the Hamiltonian, rather than any
arbitrary observable. The information about its eigenvalues is fully contained in
the correlation functions: once these are provided, we can read off any discretised
behaviour. In other words,the discrete behavior in quantum theory is not funda-
mental or ontological, but arises due to particular forms of the dynamics. This
is true even for spin systems: the “discrete” spin values are always measured in
conjunction with its coupling to some magnetic field.

7. CONCLUSIONS

Let conclude in the form of a summary:

1. We argued that complex numbers (or aU (1) invariance of probabilities)
is an inherent and irreducible component of quantum probability. Their
effect is the existence of statistical quantities that can be determined by
experiment that have no analogue in quantum probability: these are the ge-
ometric phases that can be determined by comparingtwodistinct histories
of the system. Compared to classical probability these phases correspond
to novel operational concepts.

2. The consistent histories approach provides the best formalism to take
the phase information into account: there exists an 1–1 map between
observable quantities (including phases) and mathematical objects. This
comes from the relation of the values of the decoherence functional to the
Pancharatnam phase. We do not need, however, to subscribe to the stan-
dard interpretation of consistent histories. Throughout this paper we prefer
to keep an operational perspective.

3. Taking phases as primitive objects of the formalism necessitates the use
of nonadditive probabilities. Theories with nonadditive probabilities can
be described by commutative observables (or classical logic or hidden
variables) without violating Bell’s theorem or Kochen–Specker’s theorem.
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4. We can write a theory of quantum processes in analogy with the theory
of stochastic processes. This theory has a well-defined sample space9 (we
choose the classical phase space). The only difference is that in the quan-
tum case the relevant object is a “density matrix” in the space of paths. In
this picture, the Schr¨odinger equation is an exact analogue of the Fokker–
Planck equation. Moreover, we can unravel the statistical description to
write (at least formally) quantum equations. They can be thought of, as cor-
responding to individual systems; whether they correspond to real physics
is doubtful, but they prove that Einstein’s suggestion thatquantum theory
is a statistical theory arising out of yet unknown physics for the individual
systemis possible and not in conflict with any predictions of quantum
theory.

5. Its physical implications aside, it would be very interesting to see if the
solutions to quantum differential equations can be found numerically. We
would be, then, able to simulate the evolution of individual quantum sys-
tems.

6. Starting from quantum processes we get standard quantum theory, by as-
suming the Markov property, time homogeneity, time-reversibility, and the
nontriviality of the kinematical process. Hence, the structure of the Hilbert
space necessitates the Markov condition, which presupposes a background
causal structure. In absence of thisthe Hilbert space is not necessary or
even natural. This could be the case inquantum gravity.

7. Finally, we want to identify, how the spacetime symmetries are imple-
mented in the theory of stochastic processes: the relation with the histo-
ries quantization programme guided our choice of sample space. After
all, our motivation is to find a covariant description of quantum systems,
that would allow us to tackle the quantization of gravity. What we would
like to see is that the complex phases of quantum theory, would be deeply
intertwined with the spacetime structure (perhaps in a fashion analogous
to an old conjecture by Penrose?).
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